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Abstract

Ultrashort pulsed lasers have been attracting worldwide interest in science and engineering communities. Studying the thermal defor-
mation induced by ultrashort pulsed lasers is important for preventing thermal damage. This article presents a new numerical method for
studying thermal deformation in a 3D thin film exposed to ultrashort pulsed lasers. The method is obtained based on the parabolic two-
step model and implicit finite difference schemes on a staggered mesh. It accounts for the coupling effect between lattice temperature and
strain rate, as well as for the hot electron-blast effect in momentum transfer. In particular, a fourth-order compact scheme is developed
for evaluating those stress derivatives in the dynamic equations of motion. The method allows us to avoid non-physical oscillations in the
solution. Its performance is demonstrated by a numerical example.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrafast lasers with pulse durations of the order of sub-
picoseconds to femtoseconds possess exclusive capabilities
in limiting the undesirable spread of the thermal process
zone in the heated sample [1]. The application of ultra-
short-pulsed lasers includes structural monitoring of thin
metal films [2,3], laser micromachining and patterning [4],
structural tailoring of microfilms [5], and laser synthesis
and processing in thin-film deposition [6]. Recent applica-
tions of ultrashort-pulsed lasers have been in different dis-
ciplines such as physics, chemistry, biology, medicine, and
optical technology [7–10]. The non-contact nature of fem-
tosecond lasers has made them an ideal candidate for pre-
cise thermal processing of functional nanophase materials
[1].

Success of high-energy ultrashort-pulsed lasers in real
applications relies on three factors [1]: (1) well character-
ized pulse width, intensity and experimental techniques;
(2) reliable microscale heat transfer models; and (3) pre-
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vention of thermal damage. Up to date, a number of mod-
els that focus on heat transfer in the context of ultrashort-
pulsed lasers have been developed [11–23]. However, only
a few mathematical models for studying thermal deforma-
tion induced by ultrashort pulsed lasers have been devel-
oped [1,24–26]. Tzou and his colleagues [1] presented a
one-dimensional model in a double-layered thin film. The
model was solved using a differential-difference approach.
Chen and his colleagues [24] considered a two-dimensional
axisymmetric cylindrical thin film and proposed an explicit
finite difference method by adding an artificial viscosity
term to eliminate numerical oscillations. Recently, we have
developed a new method for studying thermal deformation
in 2D thin films exposed to ultrashort pulsed lasers [27–
29]. The method is obtained based on the parabolic
two-step heat transport equations and implicit finite differ-
ence schemes on a staggered mesh. It accounts for the cou-
pling effect between lattice temperature and strain rate, as
well as for the hot electron-blast effect in momentum trans-
fer. Numerical results show that there are no numerical
oscillations in the solution. Unfortunately, when applied
to a 3D thin film case, the non-physical oscillations in
the stress (rz) appear in the solution. This is probably
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Nomenclature

Ce0 electron heat capacity
Cl lattice heat capacity
G electron–lattice coupling factor
J laser fluence
K bulk modulus
Ke thermal conductivity
R surface reflectivity
T e electron temperature
T l lattice temperature
t; tn time
tp laser pulse duration
u; v;w displacements in the x, y and z directions,

respectively
unði; j;kÞ numerical solution of uðxi;yj; zk;tnÞ
v1; v2; v3 velocity components in the x, y and z direc-

tions, respectively
x; y; z Cartesian coordinates

zs optical penetration depth
rs spatial profile parameter of laser
aT thermal expansion coefficient
Dt;Dx;Dy;Dz time increment and spatial step sizes,

respectively
D�t; dx finite difference operators
ex; ey ; ez normal strains in the x, y and z directions,

respectively
K electron-blast coefficient
cxy ; cxz; cyz shear strain
k Lame’s coefficient
l Lame’s coefficient
q density
rx; ry ; rz normal stresses in the x, y and z directions,

respectively
rxy ; rxz; ryz shear stresses in the x, y and z directions,

respectively

1980 S. Zhang et al. / International Journal of Heat and Mass Transfer 51 (2008) 1979–1995
because we used a relatively coarse grid in the computa-
tion. However, a finer mesh increased dramatically the
computation cost. In this article, we extend our research
to a 3D thin film case by developing a fourth-order com-
pact finite difference scheme for solving the dynamic equa-
tions of motion. Result shows that the non-physical
oscillations disappear.
2. Mathematical model

Consider a three-dimensional thin film in Cartesian
coordinates, which is exposed to ultrashort pulsed lasers,
as shown in Fig. 1. The governing equations for studying
thermal deformation in the thin film can be expressed as
follows:

(1) Dynamic equations of motion [1,24,27,30].
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Fig. 1. A 3D thin film with the dimension of 100 lm � 100 lm � 0.1lm,
irradiated by ultrashort-pulsed lasers.
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Here, u; v;w are the displacements in the x; y; z directions,
respectively; ex, ey and ez are the normal strains in the x,
y and z directions, respectively; cxy is the shear strain in
the xy direction, cxz is the shear strain in the xz direction,
cyz is the shear strain in the yz direction; rx, ry and rz are
the normal stresses in the x, y and z directions, respectively;
rxy is the shear stress in the xy direction, rxz is the shear
stress in the xz direction, ryz is the shear stress in the yz

direction; T e and T l are electron and lattice temperatures,
respectively; T 0 is the initial temperature; q is density; K
is electron-blast coefficient; k ¼ K � 2

3
l [31] and l are

Lame’s coefficients; and aT is the thermal expansion
coefficient.

(2) Energy equations [1,24,27,32].
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Here, CeðT eÞ ¼ Ce0ðT e

T 0
Þ is the electron heat capacity,

keðT e; T lÞ ¼ k0ðT e

T l
Þ is the thermal conductivity, G is the elec-

tron-lattice coupling factor, Cl is the lattice heat capacities,
respectively; Q is energy absorption rate; J is laser fluence;
R is surface reflectivity; tpis laser pulse duration; zs is opti-
cal penetration depth; rs is spatial profile parameter. Eqs.
(5) and (6) are often referred to as parabolic two-step heat
transport equations.

The boundary conditions are assumed to be stress free
and thermally insulated:

rx ¼ 0; rxy ¼ 0; rxz ¼ 0; at x ¼ 0; Lx; ð8aÞ
ry ¼ 0; rxy ¼ 0; ryz ¼ 0; at y ¼ 0; Ly ; ð8bÞ
rz ¼ 0; rxz ¼ 0; ryz ¼ 0; at z ¼ 0; Lz; ð8cÞ

oT e

o~n
¼ 0;

oT l

o~n
¼ 0; ð9Þ

where ~n is the unit outward normal vector on the bound-
ary. It should be pointed out that insulated boundaries
are imposed due to the assumption that there are no heat
losses from the film surfaces in the short time response.

The initial conditions are assumed to be

T e ¼ T l ¼ T 0; u ¼ v ¼ w ¼ 0;

ut ¼ vt ¼ wt ¼ 0; at t ¼ 0: ð10Þ
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Fig. 2. A 3D staggered mesh and locations of variables.
3. Finite difference method

Using a similar argument as that in [27–29], we intro-
duce three velocity components v1; v2 and v3 into the model
and re-write the dynamic equations of motion, Eqs. (1)–(4),
as follows:
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To develop a finite difference scheme, we first construct a
staggered grid as shown in Fig. 2, where v1 is placed at
ðx

iþ1
2
; yj; zkÞ, v2 is placed at ðxi; yjþ1

2
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ðxi; yj; zkÞ. Here, i; j and k are indices with 1 6 i 6 N x þ 1,
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tively, where Dt;Dx, Dy and Dz are time increment and
spatial step sizes, respectively. Similar notations are used
for other variables. Furthermore, we introduce the finite
difference operators, D�t and dx; as follows:

D�tun
i ¼ un

i � un�1
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i ¼ un
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2

� un
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:

It should be pointed out that the staggered-grid method is
often employed in computational fluid dynamics to prevent
the solution from oscillations [33]. For example, if v1 and ex

in Eq. (15a) are placed at a same location, employing a cen-
tral finite difference scheme may produce a velocity compo-
nent v1, a wave solution, implying oscillation.

To avoid non-physical oscillations in the solution, we
develop a fourth-order compact finite difference scheme

for stress derivatives orx
ox ,

orxy

oy , orxz
oz , etc. in Eqs. (12)–(15). To

this end, we let
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where a and b are unknown constants. Here, we omit indi-
ces j; k; and n for simplicity. Using the Taylor series expan-
sion, we obtain
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Substituting the above equations into Eq. (16) and compar-
ing the corresponding terms, we obtain

2aþ b ¼ 1; a ¼ 1
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; ð18Þ

with truncation error of OðDx4Þ. It should be pointed out
that the dissipative term o3rxðiÞ

ox3 has been eliminated from
the truncation error. Hence, orx

ox can be obtained by solving
the following tridiagonal system
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Table 1
Thermophysical properties

Properties Unit Value

q kg=m3 19,300
K J m�3 K�2 70
K Pa 217� 109

l Pa 27� 109

aT K�1 14:2� 10�6

Ce0 J=ðm3 K) 2:1� 104

Cl J=ðm3 K) 2:5� 106

G W=ðm3 KÞ 2:6� 1016

Ke W/(m K) 315
R 0:93
tp s 0:1� 10�12

zs m 15:3� 10�9

rs m 1:0� 10�6

J J=m2 500; 2000
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Using a similar argument, we can evaluate other stress
derivatives in Eqs. (12)–(14). Hence, the implicit finite dif-
ference schemes for solving Eqs. (12)–(14) can be written as
follows:
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Fig. 3. Change in electron temperature and displacement (w) at the center
of top surface versus time for various grids (20 � 20 � 40, 20 � 20 � 80,
20 � 20 � 100) and laser fluence J of 500 J/m2.



Fig. 4. Electron temperature profiles along z at (xcenter, ycenter) at different times: (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps and (e) t = 20 ps
with a mesh of 20 � 20 � 80 and two different laser fluences J of 500 J/m2 and J of 2000 J/m2.
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On the other hand, the finite difference schemes for rest of
the governing equations can be seen as generalizations of
the schemes described in [27] to the 3D case. We summarize
these generalizations below:
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Fig. 5. Lattice temperature profiles along z at (xcenter, ycenter) at different time
with a mesh of 20 � 20 � 80 and two different laser fluences J of 500 J/m2 an
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s: (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps and (e) t = 20 ps
d J of 2000 J/m2.
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Fig. 6. Normal stress (rz) profiles along z at (xcenter, ycenter) at different times: (a
mesh of 20 � 20 � 80 and two different laser fluences J of 500 J/m2 and 2000
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) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, (d) t = 17 ps and (e) t = 20 ps with a
J/m2.
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Fig. 7. Contours of electron temperature profiles in the cross-section of y = 5
10 ps, and (e) t = 20 ps with a mesh of 20 � 20 � 80 and laser fluence J of 50
Cl
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To complete the formulation of our numerical method, we
now turn our attention to the approximation of boundary
and initial conditions:
Fig. 8. Contours of lattice temperature profiles in the cross-section of y = 50 lm
and (e) t = 20 ps with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2
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at different times: (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps,
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Fig. 9. Contours of displacement (w) profiles in the cross-section of y = 50 lm
with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2.
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at different times: (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps
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Fig. 10. Contours of displacement (u) profiles in the cross-section of y = 50 lm
with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2.
where 1 6 i 6 Nx þ 1; 1 6 j 6 Ny þ 1; 1 6 k 6 N z þ 1;
for any time level n. The initial conditions are approxi-
mated as
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at different times: (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps
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where 1 6 i 6 Nx þ 1; 1 6 j 6 Ny þ 1; 1 6 k 6 N z þ 1;
for any time level n.

It should be pointed out that Eqs. (21)–(23) are nonlin-
ear since the terms dxðT 2

eÞ
nþ1ðiþ 1

2
; j; kÞ, dyðT 2

eÞ
nþ1ði; jþ 1

2
; kÞ

and dzðT 2
eÞ

nþ1ði; j; k þ 1
2
Þ are nonlinear. Also, it can be seen

that Eq. (28) is nonlinear. Therefore, the above scheme
must be solved iteratively. An iterative method for solving
the above scheme at time level nþ 1 is developed as
follows:
Step 1. Set the values enþ1
x ; enþ1

y , enþ1
z ; cnþ1

xy ; cnþ1
xz and cnþ1

yz ,

solve Eqs. (28) and (29) iteratively for T nþ1
e and T nþ1

l :
Fig. 11. Contours of displacement (v) profiles in the cross-section of x = 50 lm
with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2.
Step 2. Solve for rnþ1
x , rnþ1

y , rnþ1
z ; rnþ1

xy ; rnþ1
xz and rnþ1

yz

using Eqs. (26) and (27).
Step 3. Solve for derivatives of rnþ1

x , rnþ1
y , rnþ1

z ; rnþ1
xy ; rnþ1

xz

and rnþ1
yz using Eqs. (19), (20) or similar equations.

Step 4. Solve for vnþ1
1 ; vnþ1

2 and vnþ1
3 using Eqs. (21)–(23).

Step 5. Update enþ1
x ; enþ1

y , enþ1
z ; cnþ1

xy ; cnþ1
xz and cnþ1

yz using
Eqs. (24) and (25).

Given the required accuracy �1 (for temperature) and �2

(for strain), repeat the above steps until a convergent solu-
tion is obtained based on the following criteria
at different times: (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps
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Fig. 12. Contours of normal stress (rx) profiles in the cross-section of y = 5
t = 20 ps with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2.
4. Numerical examples

To test the applicability of the developed numerical
scheme, we investigated the temperature rise and thermal
deformation in a thin film with the dimensions 100 lm �
100 lm � 0.1 lm, as shown in Fig. 1. The thermophysical
properties for gold are listed in Table 1 [1,24,35]. Three
meshes of 20 � 20 � 40, 20 � 20 � 80, 20 � 20 � 100 were
chosen in order to test the convergence of the scheme. The
time increment was chosen to be 0.005 ps and T 0 was set to
0 lm at different times: (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d)
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be 300 K. Two different values of laser fluences (J = 500 J/
m2, 2000 J/m2) were chosen to study the hot electron-blast
force. The convergence criteria were chosen to be �1 ¼ 10�8

for temperature and �2 ¼ 10�16 for deformation.
We assumed that the laser was focused on the center of

the film surface. Fig. 3a shows the change in electron tem-
perature (DT e=ðDT eÞmaxÞ at the center (xcenter ¼ 50 lm,
ycenter ¼ 50 lm and z ¼ 0 lm) with laser fluences J ¼
500 J=m2. The maximum temperature rise of T e (i.e.,
Fig. 13. Contours of normal stress (rz) profiles in the cross-section of y = 50 lm
with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2.
ðDT eÞmaxÞ is about 3763 K, which is close to that obtained
in [34]. Fig. 3b shows the displacement (w) at the center
(xcenter, ycenter, z) versus time. It can be seen from both fig-
ures that mesh size had no significant effect on the solution
and hence the solution is convergent.

Figs. 4 and 5 show electron temperature and lattice tem-
perature along z at (xcenter, ycenter) with two different laser
fluences (J ¼ 500 J=m2 and 2000 J=m2) at different times
(a) t ¼ 0:25 ps, (b) t ¼ 0:5 ps, (c) t ¼ 1 ps, (d) t ¼ 10 ps,
at different times: (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps
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and (e) t ¼ 20 ps, respectively. It can be seen that the elec-
tron temperature rises to its maximum at the beginning and
then decreases while the lattice temperature rises gradually
with time.

Fig. 6 shows normal stress rz along z at (xcenter, ycenterÞ at
different times (a) t ¼ 5 ps, (b) t ¼ 10 ps, (c) t ¼ 15 ps,
(d) t ¼ 17 ps and (e) t ¼ 20 ps with a mesh of 20 � 20 �
80 and two different laser fluences (J ¼ 500 J=m2 and
2000 J=m2). Usually, numerical oscillations appear near
Fig. 14. Contours of normal stress (ry) profiles in the cross-section of x = 5
t = 20 ps with a mesh of 20 � 20 � 80 and laser fluence J of 500 J/m2.
the peak of the curve, as shown in Fig. 5 [27]. It can be seen
from Fig. 6 (particularly, Fig. 6d–e) that the normal stress
rz does not show non-physical oscillations near the peak of
the curve.

Figs. 7–14 were plotted based on the results obtained
in a mesh of 20 � 20 � 80 with a laser fluence of J ¼
500 J=m2. Figs. 7 and 8 show contours of electron temper-
ature profile and lattice temperature profile in the cross-
section of y ¼ ycenter at different times (a) t ¼ 0:25 ps,
0 lm at different times: (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d)
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(b) t ¼ 0:5 ps, (c) t ¼ 1 ps, (d) t ¼ 10 ps, and (e) t ¼ 20 ps,
respectively. It can be seen from both figures that the heat
is mainly transferred along the z direction. This result illus-
rates the fact that the femtosecond lasers are an ideal can-
didate for precise thermal processing of functional
nanophase materials. Figs. 9–14 show contours of displace-
ments ðu; v;wÞ and normal stresses (rx; ry ; rzÞ in the cross-
section of y ¼ ycenter at different times (a) t ¼ 5 ps, (b)
t ¼ 10 ps, (c) t ¼ 15 ps, and (d) t ¼ 20 ps, respectively. It
can be seen from Figs. 9–11 that the central part of the film
is expanding because displacement changes from negative
to positive along the center line in the z direction, and
along x and y directions, respectively. Similar stress altera-
tions are observed from Figs. 12–14.

5. Conclusion

We have developed a finite difference method for study-
ing thermal deformation in a 3D thin film exposed to ultra-
short pulsed lasers. The method, based on the parabolic
two-step heat transport equations, accounts for the cou-
pling effect between lattice temperature and strain rate, as
well as for the hot electron-blast effect in momentum trans-
fer. By replacing the displacement components in the
dynamic equations of motion using the velocity compo-
nents, developing a fourth-order compact method for eval-
uating stress derivatives in the dynamic equations of
motion, and employing a staggered grid, we have devel-
oped a numerical method that allows us to avoid non-phys-
ical oscillations in the solution. Numerical results show the
displacement and stress alterations at the center along the z

direction, and along x and y directions, which reveal that
the central part of thin film expands. Further research will
focus on 3D double-layered cases where the interface could
be either perfect thermal contact or imperfect thermal
contact.
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